Theory of Wind Energy
The principles concerned with converting the potential energy of fluids into useful power relies on three basic fundamentals: conservation of mass, energy and momentum, so it is useful to discuss these before examining the operation of wind turbines.
Conservation of Mass:
The continuity equation applies the principle of conservation of mass to fluid flow. Consider a fluid flowing through a fixed conduit having one inlet and one outlet.
If the flow is steady i.e no accumulation of fluid within the control volume, then the rate of fluid flow at
entry must be equal to the rate of fluid flow at exit for mass conservation. If the flow cross-sectional area A (m2), and the fluid parcel travels a distance dL in time dt, then the volume flow rate (Vf, m3/s) is given by:
Vf = A.dL/dt
but since dL/dt is the fluid velocity (V, m/s) we can write: Vf = V x A The mass flow rate (m, kg/s) is given by the product of density and volume flow rate. Between any two points within the control volume, the fluid mass flow rate can be shown to remain constant:
or 91A1V1 = p2A2V2
Labels
wind turbineTheory of Wind EnergyWind Energy Theorywind generatorwind turbine costhome wind turbinealternative energy sourcessmall wind turbinewind turbine generatorwind power generatorwind energy informationdomestic wind turbineswind power plantrenewable energy resourcesFarming Principle: Deep Soil Preparation
Looking at GB as a three-legged stool, deep soil preparation is one of the legs. Deep soil preparation builds soil and soil structure by loosening the soil to a depth of 24 inches (60 cm). Ideal soil structure has both pore space for air and water to move freely and soil particles that hold together nicely.
Smart Home Ecosystem - Smart Home Automation - Smart Home Security - Smart Home Technology
The outer-most level corresponds to the individual devices and sensors that consumers interact with. Several candidates are vying for the role of a leader introducing smart home services to the mass market.
Solar Energy Systems - Solar Modules - Solar Electric System Design - Solar Power
The heart of a photovoltaic system is the solar module. Many photovoltaic cells are wired together by the manufacturer to produce a solar module. When installed at a site, solar modules are wired together in series to form strings. Strings of modules are connected in parallel to form an array.
Solar Energy Systems - Array Mounting Racks - Solar Ray - Solar Panel - PV Racks and Mounts
Arrays are most commonly mounted on roofs or on steel poles set in concrete. In certain applications, they may be mounted at ground level or on building walls. Solar modules can also be mounted to serve as part or all of a shade structure such as a patio cover. On roof-mounted systems, the PV array is typically mounted on fixed racks, parallel to t
Solar Energy Systems - Grounding Equipment
Grounding equipment provides a well-defined, low-resistance path from your system to the ground to protect your system from current surges from lightning strikes or equipment malfunctions. Grounding also stabilizes voltages and provides a common reference point. The grounding harness is usually located on the roof.
Solar Energy Systems - Solar Inverter - Solar Panel Inverter
Most grid-connected inverters can be installed outdoors, while most off-grid inverters are not weatherproof. There are essentially two types of grid-interactive inverters: those designed for use with batteries and those designed for a system without batteries.
Solar Energy Systems - Solar Disconnects
Automatic and manual safety disconnects protect the wiring and components from power surges and other equipment malfunctions. They also ensure the system can be safely shut down and system components can be removed for maintenance and repair.
Solar Energy Systems - Solar Battery Bank
Batteries store direct current electrical energy for later use. This energy storage comes at a cost, however, since batteries reduce the efficiency and output of the PV system, typically by about 10 percent for lead-acid batteries. Batteries also increase the complexity and cost of the system.
Solar Energy Systems - Solar Charge Controller
A charge controller, sometimes referred to as a photovoltaic controller or battery charger, is only necessary in systems with battery back-up. The primary function of a charge controller is to prevent overcharging of the batteries. Most also include a lowvoltage disconnect that prevents over-discharging batteries. In addition, charge controllers pr
Solar Energy Systems - The NEC and PV Systems
Solar PV systems must be installed in accordance with Article 690 of the National Electric Code, which specifically deals with PV systems, as well as several other articles of the NEC that pertain to electrical systems in general. When there is a conflict between NEC 690 and any other article, NEC 690 takes precedence due to the unique nature of PV