....
Solar Energy Systems - Solar Battery Bank

fulloem

Solar Energy Systems - Solar Battery Bank

Solar Energy Systems - Solar Battery Bank

Batteries store direct current electrical energy for later use. This energy storage comes at a cost, however, since batteries reduce the efficiency and output of the PV system, typically by about 10 percent for lead-acid batteries. Batteries also increase the complexity and cost of the system.


Types of batteries commonly used in PV systems are:
• Lead-acid batteries
- Flooded (a.k.a. Liquid vented)
- Sealed (a.k.a. Valve-Regulated Lead Acid)
o Absorbent glass mat
o Gel cell
• Alkaline batteries
- Nickel-cadmium
- Nickel-iron
Lead-Acid Batteries – Lead-acid batteries are most common in PV systems in general and sealed lead acid batteries are most commonly used in grid-connected systems. Sealed batteries are spill-proof and do not require periodic maintenance. Flooded leadacid batteries are usually the least expensive but require adding distilled water at least monthly to replenish water lost during the normal charging process.
There are two types of sealed lead acid batteries: sealed absorbent glass mat (AGM) and gel cell. AGM lead-acid batteries have become the industry standard, as they are maintenance free and particularly suited for grid-tied systems where batteries are typically kept at a full state of charge. Gel-cell batteries, designed for freeze-resistance, are generally a poor choice because any overcharging will permanently damage the battery.
Alkaline Batteries – Because of their relatively high cost, alkaline batteries are only recommended where extremely cold temperatures (-50oF or less) are anticipated or for certain commercial or industrial applications requiring their advantages over lead-acid batteries. These advantages include tolerance of freezing or high temperatures, low maintenance requirements, and the ability to be fully discharged or over-charged without harm.
Sizing Battery Banks – For grid-connected systems, batteries are usually sized for relatively short time periods with 8 hours being typical. Size may vary, however, depending on the particular needs of a facility and the length of power outages expected. For comparison, battery banks for off-grid systems are usually sized for one to three cloudy days.
Interaction with Solar Modules – The solar array must have a higher voltage than the battery bank in order to fully charge the batteries. For systems with battery back-up, pay particular attention to the rated voltage of the module, also called the maximum power point (Vmpp), in the electrical specifications. It is important that the voltage is high enough relative to the voltage of a fully charged battery. For example, rated voltages between 16.5V and 17.5V are typical for a 12V system using liquid lead-acid batteries. Higher voltages may be required for long wiring distances between the modules and the charge controller and battery bank.
Report Abuse!

Labels

battery (invention)solar power australiawindmax windturbinesstand alone powerled. lightsoff grid housesolar charge controller48v battery bankmpp solar incoff grid solaroff-the-gridportable solar panelsoff grid australiasolar powered houseblue sea systemsgrid-tieoff-gridsolar powersolar power (industry)photovoltaics (industry)solar battery bankkyocera solaroutback power energycellmaintenance freeagm batteriesupdatewind power (industry)solar en
  • Farming Principle: Deep Soil Preparation

    Farming Principle: Deep Soil Preparation

    Looking at GB as a three-legged stool, deep soil preparation is one of the legs. Deep soil preparation builds soil and soil structure by loosening the soil to a depth of 24 inches (60 cm). Ideal soil structure has both pore space for air and water to move freely and soil particles that hold together nicely.

  • Smart Home Ecosystem - Smart Home Automation - Smart Home Security - Smart Home Technology

    Smart Home Ecosystem - Smart Home Automation - Smart Home Security - Smart Home Technology

    The outer-most level corresponds to the individual devices and sensors that consumers interact with. Several candidates are vying for the role of a leader introducing smart home services to the mass market.

  • Solar Energy Systems - Solar Modules - Solar Electric System Design - Solar Power

    Solar Energy Systems - Solar Modules - Solar Electric System Design - Solar Power

    The heart of a photovoltaic system is the solar module. Many photovoltaic cells are wired together by the manufacturer to produce a solar module. When installed at a site, solar modules are wired together in series to form strings. Strings of modules are connected in parallel to form an array.

  • Solar Energy Systems - Array Mounting Racks - Solar Ray - Solar Panel - PV Racks and Mounts

    Solar Energy Systems - Array Mounting Racks - Solar Ray - Solar Panel - PV Racks and Mounts

    Arrays are most commonly mounted on roofs or on steel poles set in concrete. In certain applications, they may be mounted at ground level or on building walls. Solar modules can also be mounted to serve as part or all of a shade structure such as a patio cover. On roof-mounted systems, the PV array is typically mounted on fixed racks, parallel to t

  • Solar Energy Systems - Grounding Equipment

    Solar Energy Systems - Grounding Equipment

    Grounding equipment provides a well-defined, low-resistance path from your system to the ground to protect your system from current surges from lightning strikes or equipment malfunctions. Grounding also stabilizes voltages and provides a common reference point. The grounding harness is usually located on the roof.

  • Solar Energy Systems - Solar Inverter - Solar Panel Inverter

    Solar Energy Systems - Solar Inverter - Solar Panel Inverter

    Most grid-connected inverters can be installed outdoors, while most off-grid inverters are not weatherproof. There are essentially two types of grid-interactive inverters: those designed for use with batteries and those designed for a system without batteries.

  • Solar Energy Systems - Solar Disconnects

    Solar Energy Systems - Solar Disconnects

    Automatic and manual safety disconnects protect the wiring and components from power surges and other equipment malfunctions. They also ensure the system can be safely shut down and system components can be removed for maintenance and repair.

  • Solar Energy Systems - Solar Charge Controller

    Solar Energy Systems - Solar Charge Controller

    A charge controller, sometimes referred to as a photovoltaic controller or battery charger, is only necessary in systems with battery back-up. The primary function of a charge controller is to prevent overcharging of the batteries. Most also include a lowvoltage disconnect that prevents over-discharging batteries. In addition, charge controllers pr

  • Solar Energy Systems - The NEC and PV Systems

    Solar Energy Systems - The NEC and PV Systems

    Solar PV systems must be installed in accordance with Article 690 of the National Electric Code, which specifically deals with PV systems, as well as several other articles of the NEC that pertain to electrical systems in general. When there is a conflict between NEC 690 and any other article, NEC 690 takes precedence due to the unique nature of PV

  • Ventilation Systems - Natural Ventilation

    Ventilation Systems - Natural Ventilation

    The bigger the both factors are the more intensive is the air change in rooms. This means that in colder weather conditions the rooms and the building is often over-ventilated and in warmer and windless weather, there is a lack of fresh air. As both of these factors are directly dependent on the external climate, the system is considered to be a no